## M.Sc. 1st Semester Examination-2022-23

## PHYSICS

Course ID : 12451
Course Code : PHYS/101C

## Course Title : Mathematical Methods-I \& Classical Mechanics

Time : 2 Hours

Full Marks : 40
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

## Unit-I

1. Answer any three of the following : $2 \times 3=6$
(a) Expand $f(z)=\frac{1}{(z+1)(z+3)}$ in Laurent series valid for $1<|z|<3$.
(b) Determine the poles and the residue at simple pole of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$.
(c) A function $u(x, y)+i v(x, y)$ is analytic, find $v(x, y)$, where $u(x, y)=\exp (x)(x \cos y-y \sin y)$.
(d) Explain the idea of branch singularity and branch cut. (e) Show that the eigen values of a Hermition matrix are real.
(c) Evaluate $\int \frac{\sin a x}{x} d x$, where $a>0$.
(d) Show that the real and imaginary parts of the function $\mathrm{w}=\log \mathrm{z}$ satisfy and Cauchy-Riemann equation when z is not zero. Find its derivative.
2. Answer any one of the following:
(b) Define vector space. Write all axioms to be satisfied to
defind a vector space. defind a vector space.
$22-23 / 12451$

# Answer any two of the following : <br> (a) Show that $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$. <br> (b) Show that the vectors $(3 i, 1,0),(2,-i, 1)$ and <br> $(0,1+1,1-i)$ form a basis of the complex vector space. <br> $4 \times 2=8$ 

$6 \times 1=6$
(a) If $f(z)=u+i v$ is an analytic function of $z$ and
$u-v=\frac{\cos z+\sin x-e^{-y}}{2 \cos x-2 \cosh y}$, prove that $f(z)=\frac{1}{2}\left[1-\cot \frac{\pi}{2}\right]$
when $f\left(\frac{\pi}{2}\right)=0$.
when $f\left(\frac{\pi}{2}\right)=0$.
(d) Solve the Hamilton-Jacobi equation for the system
whose Hamiltonian is given by $\mathrm{H}=\frac{\mathrm{p}^{2}}{2}-\frac{\mu}{\mathrm{q}}$.
6. Answer any one of the following :
(a) Given the generating function

$$
F_{1}(\mathrm{q}, \mathrm{Q}, \mathrm{t})=\frac{1}{2} \mathrm{~m} \mathrm{\omega}\left[\mathrm{q}-\frac{\mathrm{f}(\mathrm{t})}{\mathrm{m} \omega^{2}}\right]^{2} \text { cot } \mathrm{Q} \text {, }
$$

find the transformations equations and hence obtain the
equation of motion of a simple harmonic oscillator acted
upon by a force $\mathrm{f}(\mathrm{t})$ in terms of Q and P .
(b) (i) Find the Poisson bracket of $\left[\mathrm{L}_{\mathrm{x}}, \mathrm{L}_{y}\right]$.
(ii) Show that Poisson bracket is invariant under
cononical transformation.

