22-23/12451

Total Pages-4

M.Sc. 1st Semester Examination-2022-23

PHYSICS

Course Code : PHYS/101C Course ID : 12451

Course Title : Mathematical Methods-I & **Classical** Mechanics

Time : 2 Hours

The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit-I

1. Answer any three of the following :

(a) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for 1 < |z| < 3.

(b) Determine the poles and the residue at simple pole of

the function
$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$
.

(Turn Over)

Full Marks: 40

2×3=6

	(c) A function $u(x, y) + i v(x, y)$ is analytic, find $v(x, y)$, where		Unit-II
	(d) Explain the idea of branch singularity and branch cut.	4 .	inswer any three of the following : $2 \times 3^{=} 6$
	(e) Show that the eigen values of a Hermition matrix are real.	Ŭ,	a) Show that if the Hamiltonian of a system does not contain a particular coordinate, the corresponding momentum is conserved.
6	Answer any <i>two</i> of the following : (a) Show that Tr(AB) = Tr(BA).		 Show the Poisson bracket of a conserved quantity with Hamiltonian is zero.
	(b) Show that the vectors (31, 1, U), (2, -1 , 1) and (0, 1 + 1, 1 - i) form a basis of the complex vector space.	-	c) Show that if a given coordinate is cyclic in the Lagrangian, it will also be cyclic in Hamiltonian.
	(c) Evaluate $\int_{0}^{\infty} \frac{\sin ax}{x} dx$, where $a > 0$.		 d) Show that the generalized momentum corresponding to a cyclic coordinate is constant of motion.
	 (d) Show that the real and imaginary parts of the function w = log z satisfy and Cauchy-Riemann equation when z is not zero. Find its derivative. 	0	e) What is Noether theorem ?
c,	Answer any one of the followine : 6×1=6	ы. С	Answer any tuo of the following : $4 \times 2=8$
)	(a) If $f(z) = u + iv$ is an analytic function of z and		a) State and prove Jacobi-Poisson's th c orem.
	$u - v = \frac{\cos z + \sin x - e^{-y}}{2\cos x - 2\cosh y}, \text{ prove that } f(z) = \frac{1}{2} \left[1 - \cot \frac{\pi}{2} \right]$		b) Show that the transformation $P = \frac{1}{2}(p^2 + q^2)$,
= -	when $f\left(\frac{\pi}{n}\right) = 0$		$Q = \tan^{-1}(q/p)$ is cononical.
	(b) Define vector space. Write all axioms to be satisfied to defind a vector space. $2+4$		(c) Prove by the Hamolton Jacobi theory that the orbit of a planet round the sun is an elliptic one with sun at one of the foci.
22	-23/12451 (Continued)	22-	23/12451 (Turn Over)

e

3

Solve the Hamilton-Jacobi equation for the system (q)

1 σ whose Hamiltonian is given by $H = \frac{p^2}{2}$

6. Answer any one of the following :

6×1=6

(a) Given the generating function

 $F_{I}(q,Q,t) = \frac{1}{2} m\omega \left[q - \frac{f(t)}{m\omega^{2}} \right]^{2} \cot Q,$

find the transformations equations and hence obtain the equation of motion of a simple harmonic oscillator acted upon by a force f(t) in terms of Q and P.

- Find the Poisson bracket of $[L_x, L_y]$. Ξ q
- Show that Poisson bracket is invariant under 2+4 cononical transformation. (II)

(S) (E)

22-23/12451

TB-60